How can we understand, diagnose, and treat ALS (Lou Gehrig's disease)?

Project ID: 10031
Project Image
$148,237 left to reach
target of $150,000
Total Raised: $1,763

About This Project

On February 17, 2017, I was diagnosed with amyotrophic lateral sclerosis, one of the very neurodegenerative diseases that has been the focus of my research for the past 17 years. ALS has completely destroyed my body; I can't speak, walk, use my hands or hold my head up. However, my mind and soul are strong.

Using a hands-free setup, I am continuing my research with an entirely new perspective and a heightened sense of urgency. My team at the Laboratory for Precision Neuroimaging at UCSF is breaking new ground in understanding the genetic basis of the disease, in turn accelerating the development of individualized treatments. My vision is to help people like me who suffer from neurodegenerative diseases and for whom being alive is a daily struggle.

We’ve always relied on scientists to tackle some of the toughest challenges of our time. Society needs scientists like us who can take tragedies and turn them into real innovation. Above all, we need your support to advance my team’s research and help ALS patients like me.

What is the Laboratory for Precision Neuroimaging at UCSF?

At the Laboratory for Precision Neuroimaging at UCSF, our mission is to integrate imaging with genetic, health, and behavioral data to understand, diagnose, and treat brain disease. We believe that brain disorders – from autism to schizophrenia and Alzheimer’s disease ­– have different underlying causes in different people. So our goal is to develop ways to identify these subgroups of people and target trials and treatments to their individual illness.

What is the context of this research?

Amyotrophic lateral sclerosis or ALS, popularly known as Lou Gehrig’s Disease, is a fatal neurodegenerative disorder characterized by progressive muscle paralysis that spreads rapidly leading to death from respiratory failure in 3-5 years.

Although representing the second most common neurodegenerative disease in the Western world, the cause of ALS is poorly understood. Given the rapid disease progression and the absence of therapies, there is an urgent need to better understand ALS to expedite the development of therapeutic strategies.

What is the significance of this project?

For neurological illnesses like ALS and Alzheimer’s, identification of genetic risk factors has provided important insights into the mechanisms underlying the diseases. We have recently developed and validated genetic methods for discovering new genes associated with different diseases. In this project, we will use these tools along with data from 65 different traits acquired from over 3 million people worldwide to find new ALS genes.

What are the goals of the project?

The goal of this project is to help identify people who are at high genetic risk for ALS, and are developing heart disease or inflammation. Lowering cholesterol levels or inflammation in these people may hold the key to preventing ALS. We will exploit this large database to discover genes that are shared between ALS and modifiable risk factors such as high cholesterol and inflammation. We will then use cellular and molecular approaches to begin to define the role that these risk genes play in ALS-associated neurodegeneration. By unveiling the genetic basis of ALS, this work will improve our understanding of what causes ALS and identify new therapeutic targets.

The Researchers

Researcher Photo
Rahul Desikan

Assistant Professor

Department of Radiology

University of California San Francisco

Coresearcher Photo
Leo Sugrue

Assistant Professor

Department of Radiology

University of California San Francisco