Autism: Facing the Difficulties of Social Interaction

Project Image
$1,035 Left to reach milestone 1!
Milestones Reached:
$215 Total Raised
Overall Progress: 4%

About This Project

Do people with Autism Spectrum Disorder (ASD) perceive faces differently from people who do not have ASD? 

Perhaps they perceive faces the same as others, but they are not as interested in faces or are uncomfortable with direct eye contact. There is a wealth of research currently on this topic, some of which has led to the development of training programs to help improve face processing is ASD. However, the generalization of these training programs to real-world everyday functioning has not been strongly demonstrated. 

One problem with existing training programs is that they require people with ASD to pay great deal of explicit attention to faces during training. This, of course, makes sense, because the training is intended to improve face skills. But if people with ASD are not interested in faces or are uncomfortable with faces, alternate strategies that minimize extensive exposure to faces may be more beneficial.

The present project will explore alternate ways of training children with ASD to become more proficient at recognizing faces and identifying emotions in faces. The idea that will be explored in this project is to use non-faces to train children with ASD in order to improve their perceptual systems. This, in turn, may benefit their face processing skills.

Participants in this study will visit the lab approximately 3 times for about 1-2 hours per visit. The project will also use neuroimaging (functional magnetic resonance imaging, fMRI) in individuals who elect to participate in order to examine if anything in their brain has changed following training.

One goal of this project is to determine whether training ASD children with non-face objects - like houses, fish or guitars - can improve their visual perceptual skills. This will be measured by how much they improve performance on a matching task performed on a computer during training. This improvement is referred to as “learning.” By comparing training with non-faces to training with faces, this project will determine whether learning is as good with non-faces as with faces, or whether learning with non-faces is even better than with faces. 

A second goal is to determine whether training with faces or non-faces generalizes to a task they have not been trained on. This is referred to as “transfer.” One transfer task requires identifying a famous person’s face when presented among other famous or unfamiliar faces. Another transfer task requires identifying specific face emotions, such as “happy,” among faces displaying other emotions. The transfer tasks are intended to reflect real-world everyday face functions.

A third goal is to examine whether there are brain changes associated with transfer. In other words, has the brain reorganized as a result of training and can this be observed when participants perform the transfer tasks? 

If this project is successful, it will determine whether training with non-faces in ASD is a viable option for improving face skills. This could ultimately lead to a new behavioral intervention that could help with some of the social processing challenges in ASD.

During this phase of the project, we would like to raise enough funds to test 5 children in the behavioral protocol that would provide useful preliminary data. We hope to raise the initial funding in order to take this study to the next phase and test a total of 10 subjects in the behavioral and brain imaging protocol. 

The prevalence of autism spectrum disorders (ASD) is increasing. Recent estimates indicate that 1 in 88 children are now diagnosed. Although the behavioral manifestations of ASD are quite varied across individuals, one of the hallmark symptoms of ASD is difficulty with social communication. The human face is one of the most salient social stimuli in everyday life. We look to faces to identify family members and friends, to try to understand how they are feeling and to aid in verbal and non-verbal communication.

For these reasons, having an intact face processing system is vital to social communication and interaction. However, this capacity may be compromised in ASD, leading to challenges with social relationships. Consequently, research into how face processing can be improved in ASD is an important undertaking both for the individuals affected by ASD and their families and friends.

This project in particular will explore an alternate route to improving perceptual skills that may benefit face processing in ASD. This alternate route may minimize discomfort with or disinterest in faces during the learning process, which may ultimately be a more effective intervention than direct training with faces.

The Researchers

Researcher Photo
Jane Joseph

Professor

Department of Neurosciences

Medical University of South Carolina